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Abstract Bilingual lexicon induction (BLI) from comparable data has become
a common way of evaluating cross-lingual word embeddings (CWEs). These
models have drawn much attention, mainly due to their availability for rare and
low-resource language pairs. An alternative offers systems exploiting parallel
data, such as popular neural machine translation systems (NMTSs), which are
effective and yield state-of-the-art results. Despite the significant advancements
in NMTSs, their effectiveness in the BLI task compared to the models using
comparable data remains underexplored. In this paper, we provide a comparative
study of the NMTS and CWE models evaluated on the BLI task and demonstrate
the results across three diverse language pairs: distant (Estonian-English) and
close (Estonian-Finnish) language pair and language pair with different scripts
(Estonian-Russian). Our study reveals the differences, strengths, and limitations
of both approaches. We show that while NMTSs achieve impressive results for
languages with a great amount of training data available, CWEs emerge as a better
option when faced less resources.

Keywords: Bilingual lexicon induction · Cross-lingual word embeddings · Neural
machine translation systems.

1 Introduction

Bilingual Lexicon Induction (BLI) is an intrinsic evaluation task focusing on retrieving
translations of individual words. This task has been widely adopted for evaluating cross-
lingual word embeddings (CWEs). The advantage of CWEs lies in their ability to align
two sets of monolingual word embeddings (MWEs) into a shared cross-lingual space
while exploiting comparable data and only a few or no bilingual supervision signals. [18]

Leveraging this property, they have proven to be useful in many natural language
processing (NLP) applications, including machine translation [4,8], cross-lingual infor-
mation retrieval [21], language acquisition and learning [22].

The BLI task from comparable data offers a promising alternative for low-resource
or rare language pairs with insufficient parallel data. Traditionally, in lexicography,
exploiting parallel data for retrieving translations has been a preferred method for many
years. However, in the NLP field, while word-level extraction from parallel data was
central during the era of statistical machine translation [13], the specific task of BLI has
not received as much attention.
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In NLP, neural machine translation systems (NMTSs) that utilise parallel data
present another solution for retrieving translations. Although they have been proven
effective for translating sentences or texts, yielding state-of-the-art results, their potential
in the BLI task has not been fully explored yet, and to our knowledge, there are no
experiments using NMTSs for the BLI task.

In this paper, we comparatively study the BLI task from comparable and parallel
data. We select MarianMT [20] to represent NMTSs using parallel data, and the
three most cited state-of-the-art CWE methods using comparable data, i.e., Muse [5],
VecMap [2,3], and RCLS [11]. We evaluate all models across three diverse language
pairs: distant language pair (Estonian-English), close language pair (Estonian-Finnish),
and language pair with different scripts (Estonian-Russian). Our motivation is to study
the differences, similarities, strengths, and limitations of both approaches. Moreover,
the discrepancy in training data volumes between these two approaches motivated us to
understand how models perform under such different conditions on the same task. On
top of that, we aim to investigate whether recent trends favouring comparable data for
the BLI task can compete with standard, widely used parallel data.

Our contribution is threefold.

1. We provide a thorough comparison of the advantages and disadvantages of the BLI
task from comparable and parallel data.

2. We comprehensively evaluate three CWEmodels and one NMTS across diverse and
rare language pairs.

3. We make our code and datasets publicly available. ³

This paper is structured as follows. In Section 2, we explain the background behind
the BLI task from comparable and parallel data. In Section 3, we present the metrics,
data and training details. In Section 4, we evaluate the baseline models exploiting
comparable and parallel data and discuss the results. In Section 5, we offer concluding
remarks.

2 Background

The objective behind the BLI task is to find the most suitable target word (or
words) wt

i for each source word ws
i , given a list of P source words, where P =

{ws
1, w

s
2 . . . , w

s
n|n ∈ N}. Afterwards, the output L, i.e., the list of the source and target

words L = {(ws
1, w

t
1), (w

s
2, w

t
2), . . . , (w

s
l , w

t
l )|l ∈ N}, is compared to a gold-standard

evaluation dataset.
To achieve this objective, various approaches are available, often leveraging the two

most common data types: comparable and parallel data. In the following Subsections 2.1
and 2.2, we outline the background of methods exploiting both data types, focusing on
their advantages and limitations.

³ https://github.com/x-mia/marianmt-bli
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2.1 Comparable data

Comparable data or comparable corpus consists of texts in two or more languages that
share a common domain or were collected under identical conditions. It is characterised
as non-aligned and, most importantly, similar in genre. Additionally, these texts can be
similar in size. [14]

The advantage of the models using comparable data lies in their availability for low-
resource or untypical language combinations. By contrast, parallel corpora also often
skew the actual distributions of lexical items in the target language, artificially elevating
the occurrence of frequent words and cognates while disproportionately diminishing
the presence of other, potentially more natural equivalents. Additionally, the texts in
the parallel corpora are typically limited to the legislative or public domain, while
comparable corpus tends to be more diverse.

In NLP, the BLI task from comparable corpora typically evaluates CWE models,
where the aim is to find the closest target word vector to the source word vector in the
aligned cross-lingual space, usually by computing cosine similarity between the source
and target word vectors. The seminal study by Mikolov et al. (2013) [16] introduced
this trend to NLP, followed by a plethora of research papers ranging from most cited
baseline methods [1,5,11], comprehensive evaluation studies and surveys [18,9] to
recent experiments with dynamic embeddings [15]. In this paper, we demonstrate the
results across three CWE models, which are cited as baseline models in many research
papers: Muse [5], VecMap [2], and RCLS [11]. We selected these models as they
are publicly available and straightforward to use, and the performance gap compared
to newer methods is not substantial. On top of that, they are more accessible and
computationally less demanding to train than NMTSs.

Muse was released as a strong baseline model along with the evaluation and training
datasets for over 110 languages. They employed a two-step process: adversarial
training that develops a linear mapping between the source and target embedding spaces,
challenging a discriminator to distinguish between them, and Procrustes refinement
that optimises this mapping, leveraging a synthetic dictionary derived from the initial
alignment. The introduction of the Cross-Domain Similarity Local Scaling (CSLS)
metric aimed to address the high-dimensional space’s hubness issue ⁴, significantly
improving nearest-neighbour searches.

VecMap presented a multi-step framework for learning bilingual word embeddings
while generalising and refining a wide array of previous approaches. Central to this
framework is an orthogonal transformation, which allows for a detailed reinterpretation
and improvement alongside additional steps such as normalisation, whitening, re-
weighting, de-whitening, and dimensionality reduction. They also proposed a method
in an unsupervised mode [3], relying on an unsupervised initialisation that exploits
structural similarities between monolingual embeddings, coupled with a self-learning
algorithm that iteratively refines the mappings.

RCLS aligned word embeddings from different languages by optimising the CSLS
criterion, using convex relaxations for efficient optimisation, in contrast to traditional

⁴ Hubness is an issue observed in high-dimensional space where some points are the nearest
neighbours of many other points. [17]
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approaches that typically solve a quadratic problem. It incorporated unsupervised data
to enhance alignment, addressing the hubness problem by ensuring consistency between
the loss used in training and inference.

2.2 Parallel data

The opposite of comparable data is parallel data or parallel corpora. It is a type of corpus
that comprises two or more monolingual text collections that are aligned at the word,
phrase, or sentence level. [14]

Exploiting parallel corpus for retrieving translations has been a preferred method
mainly in lexicography, for instance, in the statistical-based method that computes the
probabilities of word pair candidates based on their occurrences and co-occurrences
presented in Kovář et al. (2016) [14]. In NLP, the parallel-data-based methods are often
represented by NMTSs, which are not typically used for the BLI task. However, NMTSs
could be used for compiling gold-standard dictionaries, as in the case of the widely used
evaluation datasets Muse for evaluating CWEs.

The main advantage of the parallel corpus is that it contains rich context information
while offering many target word candidates and performing well for polysemous words
and multi-word expressions in contrast to the CWE models, which focus on pure word-
to-word alignment. Moreover, the NMTSs can translate words that were unseen in
training data, whereas CWEs are limited to the vocabulary in MWEs.

In this work, we opted for NMTS called MarianMT [20] for evaluation. MarianMT
was trained using the Marian C++ library⁵ on OPUS parallel corpora⁶ [19], which
have various domains, such as subtitles, public texts, web texts, etc. It contains over
1,000 models, of which all are transformer encoders-decoders with six layers in each
component. Additionally, it supports a wide diversity of languages and language
combinations, including European, non-European, endangered languages, etc.

3 Experimental Setup

In this Section, we introduce four key aspects of this experiment: the evaluation
and training datasets used, training details of the CWE models, the setup details
of MarianMT, and the evaluation metrics and procedures we employed during the
evaluation.

3.1 Data

Training data. To train CWEs, we utilised pre-trained fastText MWEs for English, Es-
tonian, Finnish, and Russian. These were trained on Wikipedia with dimension 300
and contain over 9.2 billion words in English and under 10 million tokens for the other
languages. [10] For supervised mode, we selected the training datasets Muse [5] for
Estonian-English. For Estonian-Finnish and Estonian-Russian, we compiled new train-
ing datasets by aligning Estonian-English with English-Finnish and English-Russian

⁵ https://marian-nmt.github.io/
⁶ https://opus.nlpl.eu/
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Muse training datasets while using English as the pivot language. All training datasets
contain 5K source words.

Regarding the training data for MarianMT, OPUS parallel corpora contain
115,564,910 sentences for Estonian-English, 42,353,565 sentences for Estonian-
Finnish, and 29,699,112 sentences for Estonian-Russian.

Evaluation data. In the evaluation part, we exploited the Estonian-English evalua-
tion dataset Muse. Since the evaluation datasets Muse are often criticised for uneven
part of speech distribution [12] and containing errors in translations [7], we included
Estonian-English ⁷, Estonian-Finnish ⁸, and Estonian-Russian ⁹ dictionaries that were
manually post-edited by lexicographers from the Institute of the Estonian Language
(EKI). All of these dictionaries are published under a CC BY 4.0 Deed licence. ¹⁰

3.2 Training details of CWEs

For our comparison, we selected three state-of-the-art CWE methods, Muse, VecMap
(VM), and RCLS. All three models are trained in a supervised mode (Muse-S, VM-S,
RCLS), while only Muse and VM in an unsupervised (Muse-U, VM-U) mode and mode
that relies on identical strings (Muse-I, VM-I).

The default settings closely followed the Muse training described in [5], RCLS
setting in [11], and VM-S and VM-I in [2], and VM-U settings in [3]. The results are
computed from the first 200K aligned embeddings.

3.3 MarianMT

We experimented with three pre-trained MarianMT models: Helsinki-NLP/opus-mt-
et-en, Helsinki-NLP/opus-mt-et-fi, and Helsinki-NLP/opus-mt-et-ru, using Python pro-
gramming language with PyTorch framework and HuggingFace library. ¹¹

We employed a series of parameters during the translation generation. We set the
beam search to 20, disabled random sampling, specified to return ten target words,
restricted the maximum number of new tokens that the model can generate in the
response to 10, and enabled the output of scores.

3.4 Metrics

The most common evaluation metric in the BLI task is precision@k where k represents
the number of target words retrieved for a single source word. In this paper, we report,
in addition to precision, also recall and F1 scores using fixed and dynamic k.

We calculate the precision (P) as the ratio of the positive target words to the number
of all target words that the model found (positive and negative). The recall (R) and

⁷ http://www.eki.ee/dict/ies/
⁸ http://www.eki.ee/dict/efi/
⁹ https://portaal.eki.ee/dict/evs/
¹⁰ https://creativecommons.org/licenses/by/4.0/
¹¹ https://huggingface.co/

http://www.eki.ee/dict/ies/
http://www.eki.ee/dict/efi/
https://portaal.eki.ee/dict/evs/
https://creativecommons.org/licenses/by/4.0/
https://huggingface.co/
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F1 score representing the balance between precision and recall are computed using the
standard formula.

In the case of the fixed k, we set it to 1, i.e., we report P@1, R@1, and F1@1.
When evaluating CWEs using dynamic k, instead of limiting the retrieved target words
based on top-k nearest neighbours, we restrict cosine similarity scores with the following
formula adopted from Denisová (2022) [6]:

limit = SC(x
s
i , x

t
j) + j ∗ 0.01

, where SC(x
s
i , x

t
i) represents cosine similarity between the source word vector xs

i and
target word vector xt

i, and j denotes the position of the target word, i.e., the target word
with the closest target word vector has a position 0, etc. The value of SC(x

s
i , x

t
j) was

adjusted for each model and language pair individually.
When evaluating MarianMT using dynamic k, we retrieved scores stored in the

model to determine the reliability of each target word candidate. Then, we excluded
each target word candidate with a score < 0.05.

4 Evaluation

Overall results for Estonian-English (et-en) are displayed in Tables 1 and 2, where
Table 1 presents dynamic k and Table 2 fixed k, both using two different evaluation
datasets. General results for Estonian-Finnish (et-fi) are outlined in Table 4 and for
Estonian-Russian (et-ru) in Table 5.

Table 1. The results for the Estonian-English language pair evaluated using dynamic k.

et-en (%) Muse dataset EKI dataset
P R F1 P R F1

MarianMT 50.39 49.64 50.01 32.17 29.70 30.89
Muse-S 17.42 45.02 25.13 9.78 32.85 15.07
Muse-I 17.60 38.75 24.20 9.17 23.43 13.18
Muse-U 0.00 0.00 0.00 0.00 0.00 0.00
VM-S 21.60 50.36 30.23 8.31 40.11 13.77
VM-I 17.67 50.96 26.24 6.90 37.29 11.65
VM-U 15.15 46.95 22.91 6.74 36.84 11.40
RCLS 20.84 53.82 30.04 19.12 30.79 23.58

When looking at Tables 1 and 2, MarianMT outperformed CWE models in almost
all metrics measured across Estonian-English language pair by a margin approximately
ranging from 3% to 51%. Generally, the results for EKI evaluation dataset were worse
than Muse by around up to 20%.

We examined some examples from both evaluation datasets, and the reason behind
such a decrease in performance is that the Muse dataset is polluted by English to English
equivalents, such as act - act, ever - ever, girls - girls, etc. Moreover, it contains
a lot of English proper nouns which are identical in both languages, e.g., adelaide -
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Table 2. The results for the Estonian-English language pair evaluated using fixed k = 1.

et-en (%) Muse dataset EKI dataset
P@1 R@1 F1@1 P@1 R@1 F1@1

MarianMT 56.33 46.51 50.95 33.85 33.83 33.84
Muse-S 40.33 33.30 36.48 25.11 23.49 24.28
Muse-I 36.80 30.38 33.28 19.42 18.17 18.77
Muse-U 0.00 0.00 0.00 0.00 0.00 0.00
VM-S 49.20 40.62 44.50 28.60 26.76 27.65
VM-I 49.07 40.51 44.38 24.26 22.70 23.46
VM-U 42.13 34.78 38.11 23.75 22.23 22.96
RCLS 45.53 37.59 41.18 30.74 28.76 29.71

adelaide, hannah - hannah, selma - selma, etc. We naturally get better outcomes when
generating the target words in English for an English word. The same applies to fastText
embeddings that are often noisy and contain English words.

Furthermore, we compared examples from MarianMT and RCLS models evaluated
with the Estonian-English EKI evaluation dataset. Table 3 exemplifies themain findings.
The performance of the model RCLS was worse than that of the model MarianMT,
which confirmed the examination of their outputs. The main error which we discovered
in RCLS model was that it aligned mainly word pairs with similar lexical-semantic
relationships instead of translations. In MarianMT, the errors were various. Firstly,
it often generated a target word with a capital letter (Type A), but the evaluation
datasets were lowercase. The model appended extra numbers or punctuation to some
target words (Types A and E) and, in some cases, generated complete sentences (Type
C). Additionally, some target word candidates exhibited part-of-speech mismatches
with the source word, for instance, a verb (jutustama) was translated as an adjective
(narrated) (Type B). Finally, the model demonstrated the capability to handle multi-word
expressions (Type D), offering a distinct advantage over CWEmodels that typically map
single-word units to corresponding single-word units.

On the other hand, Tables 4 and 5 indicate a significant decrease in MarianMT
performance. Although MarianMT still surpassed nearly all CWE models in the
Estonian-Finnish evaluation by a margin of around 3% to 14%, it did not perform as well
as the CWE model VM-U in the Estonian-Russian evaluation, where VM-U achieved
the best performance.

The reason behind this is twofold. Firstly, the Estonian-Russian evaluation dataset
contains a lot of target word variants for each source word, which influences the result,
especially for models that are not performing well for polysemous words. Table 6
shows the number of target words in each dataset. We can observe that both Estonian-
English evaluation datasets contain a lot of targets with one equivalent, whereas
Estonian-Finnish and Estonian-Russian are more spread out. This is consistent with the
performance of our models, i.e., the recall is high for Estonian-English but significantly
decreases for Estonian-Finnish and Estonian-Russian.

NMTSs are known for generating only one output, which is reflected in the recall
performance. Some models, including MarianMT, are able to offer more than one
output, but access to the model is necessary. Table 7 displays a few examples from
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Table 3. Examples of the source (SRC) and target (TGT) words from the Estonian-English
evaluation dataset EKI compared to the output from MarianMT and RCLS models. The target
words in bold are correct.

Type SRC TGT MarianMT RCLS Explanation
A aasta year Year 4

Year 3
Year
year

year month
summer
autumn

capital letter,
numbers

mänguasi toy Toy toy game
play
boardgame

B jutustama narrate narrate
narrated

tale
story
tell

part-of-speech
mismatch

C aluspüksid panties Terry towelling
and similar
woven terry
fabrics

trousers
pants shirts

nonsense/
sentence

loodetavasti hopefully I hope so.
Hopefully.

probably
possibly
hope
greatly

D ristsõna crossword crossword puzzles
crossword word
Crossword Puzzle

- multi-word
expression

E au honor (au) -
(au) honor

honour ain

punctuacion,
symbols,
English

hõlmama encompass cover: covers covering
encompass

Table 4. The results for the Estonian-Finnish language pair evaluated using dynamic and fixed k
= 1.

et-fi (%) P R F1 P@1 R@1 F1@1
MarianMT 19.40 21.21 20.27 50.57 13.62 21.46
Muse-S 17.74 11.25 13.77 37.57 10.12 15.95
Muse-I 16.11 11.38 13.34 36.22 9.76 15.37
Muse-U 14.70 12.03 13.24 36.93 9.95 15.67
VM-S 15.43 15.80 15.62 38.28 10.31 16.25
VM-I 13.65 16.59 14.97 42.33 11.40 17.97
VM-U 13.66 16.59 14.98 42.26 11.38 17.94
RCLS 28.76 12.11 17.04 39.49 10.64 16.76



36

Table 5. The results for the Estonian-Russian language pair evaluated using dynamic and fixed k
= 1.

et-ru (%) P R F1 P@1 R@1 F1@1
MarianMT 9.97 4.05 5.76 17.73 2.91 5.01
Muse-S 22.77 6.40 10.0 35.17 5.79 9.94
Muse-I 21.92 5.51 8.81 31.98 5.26 9.04
Muse-U 0.00 0.00 0.00 0.00 0.00 0.00
VM-S 18.54 10.04 13.03 35.96 5.92 10.16
VM-I 18.04 11.09 13.73 39.58 6.51 11.19
VM-U 19.21 11.93 14.72 44.21 7.28 12.5
RCLS 30.59 8.29 13.04 35.89 5.90 10.14

Table 6. The number of target words (TGW) in the evaluation datasets. 1 Muse dataset. 2 EKI
dataset.

TGW et-en1 et-en2 et-fi et-ru
1 1240 3150 381 343
2 211 2 275 230
3 43 0 226 186
4 4 0 152 160
5 2 0 118 93
6+ 0 0 256 488

the models MarianMT and VM-U trained across Estonian-Russian. It can be observed
that theMarianMTmodel typically generates fewer target words, and a majority of these
words include symbols, punctuation, and capital letters, i.e., the output is in the form of
a sentence since the NMTSs are trained to translate sentences and not words in isolation.

Secondly, the amount of training data available in parallel corpus OPUS is larger and
of better quality for Estonian-English than for Estonian-Finnish and Estonian-Russian.
The Estonian-English corpora include over 115,500,000 sentences sourced from top-
tier resources such as ParaCrawl, Europarl, DGT, and open subtitles. In contrast, the
Estonian-Finnish corpora comprise over 42,300,000 sentences from similar high-quality
sources likeMultiParaCrawl, Europarl, DGT, and open subtitles. However, the Estonian-
Russian corpora contain approximately 29,700,000 sentences, primarily from open
subtitles and lower-quality sources like KDE4. Although over 29,000,000 sentences
of training data for a language pair are not considered under-resourced, it has a major
impact on the resulting quality of the translations. In the lower-data scenario and despite
the training data volume discrepancy, the CWE models yield better results and prove to
be a good supplement to the NMTSs.

5 Conclusion

In this paper, we have conducted a comparative analysis of the BLI task from comparable
and parallel data. We have thoroughly discussed both data types and compared their
advantages and limitations. From each group, we have selected models representing
the specific data type, i.e., popular CWE models Muse, VecMap, and RCLS for the
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Table 7. Examples of the source (SRC) and target (TGT) words from the Estonian-Russian
evaluation dataset compared to the output from MarianMT and VM-U models. The target words
in bold are correct.

SRC TGT MarianMT VM-U Explanation
inglane англичанин

англичанка
британец
бритт

Англичанин.
Англичанин

англичанин
американец
шотландец
британец
француз

capital letters,
sentence-form of
the output

ületama переходить
проходить
пересекать
переезжать
переправляться
преодолевать
превышать
превосходить
перекрывать

Преодолеть преодолевать
пересекать
доходить
подниматься
переправляться

capital letters

patarei батарейка
куча
батарейный
батареи

& Батарея
Батарея…
Батарея:

батарея
батареи
батарее
батарейный

symbols,
punctuation

BLI task from comparable data, and NMTS MarianMT for the parallel data. We have
evaluated these models across three diverse language pairs: distant (Estonian-English),
close (Estonian-Finnish), and language pair with different scripts (Estonian-Russian),
and we have analysed the results rigorously.

In conclusion, although NMTSs are still a competition to the CWE models due
to their ability to capture context and handle multi-word expressions, their outcomes
heavily depend on the amount of training data available. The CWE models represent a
good alternative or can serve as a supplement data, especially for languages with fewer
resources or when recall is favour over precision.
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